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Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption
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The reflection matrixR5S†S, with Sbeing the scattering matrix, differs from the unit matrix when absorp-
tion is finite. Using the random matrix approach, we calculate analytically the distribution function of its
eigenvalues in the limit of a large number of propagating modes in the leads attached to a chaotic cavity. The
obtained result is independent of the presence of time-reversal symmetry in the system, being valid at finite
absorption and arbitrary openness of the system. The particular cases of perfectly and weakly open cavities are
considered in detail. An application of our results to the problem of thermal emission from random media is
briefly discussed.
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INTRODUCTION

When absorption in a cavity is finite, part of the incomin
flux gets irreversibly lost in the walls, thus breaking the u
tarity of the scattering matrix. The mismatch between inco
ing and outgoing fluxes in the scattering process can be n
rally described by means of the reflection matrixR5Sg

†Sg ,
where Sg denotes the subunitary~at nonzero absorption!
scattering matrix to be precisely defined below. The matriR
has the positive eigenvaluesr c<1, the so-calledreflection
eigenvalues. Their statistical properties in chaotic resonan
scattering attract much attention presently, both experim
tally @1,2# and theoretically@3–9#, using the random-matrix
theory approach@10,11#.

In the limit of weak absorption,R was found@1,7# to be
related to the Smith’s time-delay matrix at zero absorpti
whose statistical properties were extensively studied in
cent time@12–16#. Such an analysis was recently generaliz
by us to the case of arbitrary absorption@8#, see also@9# for
the related study. In the particular case of the single-chan
cavity, obtained results partly explain the recent experim
@2# on the reflection coefficient distribution.

The opposite case of a large number of equivalent ch
nels plays an important role in chaotic scattering, cor
sponding to the semiclassical limit of matrix models@17,18#.
In this caseN strongly overlapping resonances~poles of the
S matrix! are excited in the open cavity through the scatt
ing channels, whose numberM scales withN. A new energy
scale appears then in addition to the mean level spacingD of
the closed cavity@12,18#: the empty gap between the re
axis in the complex energy plane and the cloud of the re
nances in its lower half plane. In the physically justified lim
M /N!1 @12# ~though bothM ,N→`) considered below this
gap is given by the well-known Weisskopf widthGW

5MTD/2p, with T512uS̄u2<1 being the transmission co
efficient @17#. In the presence of finite absorption the widt
of the resonances acquire an additional contribution, the
sorption width Ga @8#. The two competing processes, th
escape into continuum and dissolution into the walls,
therefore characterized by the ratioGa /GW5g/T, where the
convenient dimensionless parameterg[2pGa /DM mea-
sures the absorption strength.
1063-651X/2004/69~3!/035201~4!/$22.50 69 0352
-
-

tu-

e
n-

,
-

d

el
nt

n-
-

-

o-

b-

e

In this Rapid Communication we derive the probabili
distribution functionP(r )5M 21(c51

M d(r 2r c) of reflection
eigenvalues, with the bar indicating the statistical average
the limit of the large number of channels. This functio
has, in particular, an important application for the statist
of thermal emission from random media and is known o
at perfect coupling (T51) @5#. Here, we calculate it at arbi
trary T.

Our starting point is the general relation established
Ref. @8# betweenR and the effective non-Hermitian Hamil
tonianH5H2( i /2)VV† of the open system, where the He
mitian partH stands for the closed counterpart and the a
plitudesVn

c describe the coupling betweenN intrinsic andM
channel states. It is achieved by making use of the equ
lence @6–8# of uniform absorption to the pure imaginar
shift Eg[E1 iGa/2 of the scattering energyE, thus giving
Sg[S(Eg)512 iV†(Eg2H)21V. This leads to the follow-
ing connection between the reflection matrixR and the time-
delay matrix with absorptionQg (\51) @8#:

R512GaQg , ~1!

where Qg[Q(Eg)5V†@(Eg2H)†#21(Eg2H)21V. The
distribution functionP(r ) is therefore directly related as

P~r !5g21Pt@g21~12r !# ~2!

to the distributionPt(t)5M 21(c51
M d(t2Mqc /tH) of the

proper delay times~eigenvaluesqc of Qg) scaled withM and
measured in units of the Heisenberg timetH52p/D.

The function~2! is normalized to unity. The average re
flection coefficient̂ r &5M 21tr R is given by

^r &5E
0

1

drrP~r !5
T1g~12T!

T1g
. ~3!

This result follows from the connection@8# between̂ r & and
the ‘‘norm-leakage’’ decay functionP(t) introduced in@19#:
^r &512g@12Ga*0

`dte2GatP(t)#. In the limit considered
P(t) reduces to the simple exponente2GWt, since the widths
ceased to fluctuate@18,19#. Below we will also derive Eq.~3!
using a different method.
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THE SADDLE-POINT EQUATION

The scaling limit studied is far from being trivial an
cannot be obtained from the known expressions forP(r ) at
finite M @8# simply by lettingM→` there. One needs to sta
from the original definition that determines the desired d
tribution through the jump of the resolventG(t)
5M 21tr(t2GaQg)21[1/t1(g/t2)K(t) along the disconti-
nuity line t.0 as follows:

P~r !5
g

p~12r !2
Im K~ t2 i0!u t512r . ~4!

Following Refs.@8,16#, one can obtain the exact~at N→`)
representation forK, which is convenient for our purposes

K~ t !5K 1

8
strF S L2 i

12t/2

A12t
L1D kŝG L

L
, ~5!

with the shorthand̂( . . . )&L5*dm(ŝ)( . . . )e(M /2)L and

L5~g/t !str@~12t/2!Lŝ2 iA12tL1ŝ#

2str ln@11~2g!21~Lŝ1ŝL!#, ~6!

as the integral over the noncompact saddle-point manifol
the 838 supermatrixŝ subject to the constraintŝ251.
L,L1 appearing above are the supermatrix analog of
Pauli matricess3 ,s1 andk511(21) in the space of com
muting ~anticommuting! variables. Definitions of the supe
algebra as well as explicit parametrization, which depends
whether time-reversal symmetry~TRS! is preserved or bro-
ken, can be found in@10,20#. At last, the constantg52/T
21>1 is related to the transmission coefficientT.

In the limit M→` the integration overŝ can also be done
in the saddle-point approximation. Function~5! is given by a
saddle-point value ofŝ, which is found, as usual, by equa
ing the variancedL to zero. The structure of the latter equ
tion is determined by that ofL. A careful analysis shows
that, independently of TRS, the supermatrixŝ reduces~and
so does the corresponding algebra! in the saddle-point to the
232 usual matrix s5as31bs1 with the imposed con-
straint a21b251. We find thatK5a2 ib(12t/2)/A12t,
whereas the equationdL50 gives (g/t)A12tK1 ib/(g
1a)50. Eliminating in this equationa and b, one finally
arrives after some algebra at the following saddle-point eq
tion:

1

t
5

1

2
2

1

gK
1

~K1g!/2

6A~K1g!21114/g22g222/g
, ~7!

where the sign ‘‘1’’ must be taken. Independently on th
taken choice of the sign, Eq.~7! can be further equivalently
represented as the following fourth-order equation inK:
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K412gK3

t S 12
1

t D1
K2

4 F S g1
2

g D 2

2
8g

tg
2S 12

2

t D
2G

1
K

g S 12
2

t D2
1

g2
50. ~8!

In the zero absorption limit,g→0 with fixed t/g5t, this
equation simplifies to the cubic one found earlier@16#.

The choice of the sign ‘‘1’’ is justified by two reasons.
First, only then the complex solution of Eq.~7! yields the
distributionP(r ) nonzero at positiver. Second, the function
K(t), as follows directly from its definition, must have att
→2` the positive limitK`5tH

21tr Qg ,1 @8#, which is the
mean scaled proper delay time^t&. The equation for the
latter follows then readily from~8! as @(g12/g)221#^t&2

14^t&/g24/g250 which gives^t&5T/(g1T), reproduc-
ing thus Eq.~3! by virtue of ^r &512g^t&.

The higher moments of the distribution can be easily c
culated in the same way, exploiting the 1/t expansion further.
For example, substitutingK5^t&1g^t2&/t1O(t22) in Eq.
~8! and equating there the 1/t term to zero, we find̂ t2&
5^t&2@g212(g1T)#/(g1T)2. That yields the variance o
reflection eigenvalues as follows:

^r 2&2^r &25
g2T2~2g12T~12g!2T2!

~g1T!4
. ~9!

Remarkably, the variance and, therefore, fluctuations ofr are
suppressed in the both limits of weak and strong absorpt
This reflects the fact thatR becomes the unit matrix a
g→0 whereasR→12T ~or Sg→S̄) as g→`, see also
Eq. ~3!.

To understand qualitatively the structure of the solutio
of the saddle-point equation, it is instructive to consider
behavior of 1/t as a function ofK shown schematically on
Fig. 1. We readily see that the distribution functionP(r ) is
nonzero only in the finite domainr min,r ,r max. The value
of the upper borderr max,1 at anyg andg. In a vicinity of
r max the distribution behaves asP(r )}Ar max2r . For the
lower border we findr min50 and P(r )}1/Ar , when (g
22/g)2<1 or T<g<T/(12T), and r min.0 with P(r )
}Ar 2r min otherwise@21#. Such a behavior should be con
trasted with that of the few-channel case@8# when all values
of r from zero to one are permitted. Further analytical stu
is possible in the following particular cases, which we co
sider in detail now.

PERFECT COUPLING, gÄTÄ1

In this case, the region between the two vertical dash
dotted lines on Fig. 1 shrinks to the lineK521. Eliminating
the resulting common factor (K11), one gets from Eq.~8!
the following cubic equation:

K31K21
~12r !2

rg2 FKS 2g

12r
212g D11G50, ~10!
1-2
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written already in the variabler 512t. We find that the
discriminant D5@(11g)/(3g2r )#3(r 12r )(r 2r 2)(12r )4

of this equation, with

r 65
8120g22g46g~81g2!3/2

8~11g!3
, ~11!

is positive atr .0 ~and thereby ImK is nonzero! only in the
domain max@0,r 2#,r ,r 1 . This explicitly sets the exac
borders for the searched distribution.P(r ) can be found from
Eq. ~10! by applying Cardan’s formulas, reproducing exac
the result of Ref.@5# obtained by a different method. Whe
absorption is weak,g,1, the behavior ofP(r ) can be well
approximated by the following interpolation expression@22#:

Pg,1~r !5
Cg

2p

A~r 12r !~r 2r 2!

~12r !2Ar
, ~12!

with Cg511 3
2 g1O(g2) being the normalization constan

In the opposite case of strong absorption, the distributio
found to be close to

Pg.1~r !5
2A12r 1

pr 1

Ar 1 /r 21

~12r !2
. ~13!

The limiting distribution ~12! or ~13! becomes asymptoti
cally exact asg diminishes or grows, respectively. All thes
features are illustrated on Fig. 2~a!.

FIG. 1. The schematic plot of 1/t as a function ofK. The solid
and dashed lines correspond to the choices of the ‘‘1’’ and ‘‘ 2’’
signs in Eq.~7!, respectively. Altogether they form the complete s
of solutions of the fourth-order equation~8!. In the shadowed re-
gion the latter equation has two complex-conjugated roots~and two
real roots irrelevant for our purposes!, with t21.1 (r .0). Thus,
only in this region the corresponding density is nonzero. Anot
solution with 0,t21,1 is unphysical.
03520
is

SPECIAL COUPLING, g2Ä1¿4Õg2

Under this condition Eq.~7! reduces to a quadratic equa
tion in K, giving readily

Pg~r !5
2A12r g

pr g

Ar g /r 21

~12r !2
, ~14!

with r g52/(11A11g2/4)52/(11g/Ag221).

WEAK COUPLING, gÉ2ÕTš1

One can find approximate expressions forP(r ), making
use of the scalingK;O(1/g) in the exact equations. Whe
absorption is weak, we may expand the square root in Eq~7!
and keep only the main contribution (2g/g)(112gK)21 in-
stead of the last term there. That leads again to a quad
equation in K, giving readily the behavior P(r )
'(g/2gp2)1/2Ar max2r /(12r )2 near the upper borderr max
'12g/8g. For g from the small interval@T,T/(12T)#,
whenr min50, P(r ) is given in the leading approximation b
Eq. ~14!, with r g replaced byr max, because the applicability
condition for Eq.~14! is now satisfied up toO(g22). At
other values of smallg there is no reliable approximation fo
the lower border available andr min.0 is to be found from
the general equation@21#. At last, for very strong absorption
andarbitrary nonperfectcoupling,TÞ1, we can use scaling
K;O(1/Ag) in Eq. ~7!. That allows us to replace the las
term there with1

2 (K1g)/(11gK22/g), yielding finally

Pg@1~r !5
C

2p

A~r 01Dr 2r !~r 2r 01Dr !

~12r !2~12T1r !
, ~15!

with the normalization constantC'g22(12T) and

r 0'12T2
2T~223T!

g
and Dr'2A2TA12T

g
,

which is valid whenr 0@Dr or g@8T2/(12T). Expression
~15! becomes asymptotically exact asg grows, approaching
the ‘‘semicircle’’ distribution with the center atr 0 and the
radiusDr , see Fig. 2~b!.

t

r

FIG. 2. The exact reflection distribution~solid lines! compared
to the corresponding approximate expressions~12!, ~13!, and~15! at
perfect (T51, left! and nonperfect (T50.5, right! coupling.
1-3
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THERMAL EMISSION

As an application of our results we consider thermal em
sion from random media. In his seminal paper Beenakker@5#
has shown that the quantum optical problem of the pho
statistics can be reduced to a computation of theS matrix of
the classical wave equation. In particular, chaotic radiat
may be characterized by the effective numberneff degrees of
freedom as follows:neff /n5(12^r &)2/^(12r )2&<1 @5#,
with neff5n for blackbody radiation@23#. We find using Eq.
~9! that at anyg andT

neff

n
5

^t&2

^t2&
5

~g1T!2

g212~g1T!
, ~16!

and a mean photocountn̄5n f gT/(g1T), with f being a
Bose-Einstein function. The earlier result@5# is reproduced at
T51. Upon the substitution ofg with 2g one can use@5#
n̄ and neff /n ~16! even for amplified spontaneous emissi
below the laser threshold,g,T. In this case our mean
photocount agrees with the findings of Ref.@24#, where the
general theory of photocount statistics in random amplify
media was developed. In the limit of vanishing absorpt
,
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or amplification, the rationeff /n is T/2. The largeg expan-
sionneff /n5122(12T)/g1O(g22) shows that the satura
tion to the blackbody limit gets slower when transmissi
T,1.

In conclusion, for many-channel chaotic systems we h
derived the general distribution of reflection eigenvalues
arbitrary values of absorption and transmission. We note
due to a duality relation@5,25#, an amplifying system in the
linear regime (Ga,GW) is directly linked to the dual absorb
ing one through the change of the sign ofGa in ~1! and
correspondingly thereafter. As a result, the reflection ma
ces~and their eigenvalues! of dual systems are each other
reciprocal. Therefore, the analysis presented can straigh
wardly be extended to the case of linear amplification t
might be also relevant for the rapidly developing field
random lasers@4,5,24–26#.
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