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Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption
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The reflection matribR=S'S, with Sbeing the scattering matrix, differs from the unit matrix when absorp-
tion is finite. Using the random matrix approach, we calculate analytically the distribution function of its
eigenvalues in the limit of a large number of propagating modes in the leads attached to a chaotic cavity. The
obtained result is independent of the presence of time-reversal symmetry in the system, being valid at finite
absorption and arbitrary openness of the system. The particular cases of perfectly and weakly open cavities are
considered in detail. An application of our results to the problem of thermal emission from random media is
briefly discussed.
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INTRODUCTION In this Rapid Communication we derive the probability
distribution functionP(r)=M =M  5(r—r.) of reflection
When absorption in a cavity is finite, part of the incoming eigenvalues, with the bar indicating the statistical average, in
flux gets irreversibly lost in the walls, thus breaking the uni-the limit of the large number of channels. This function
tarity of the scattering matrix. The mismatch between incomhas, in particular, an important application for the statistics
ing and outgoing fluxes in the scattering process can be nat@f thermal emission from random media and is known only
rally described by means of the reflection mafx Ss,,  at perfect couplingT=1) [5]. Here, we calculate it at arbi-
where S, denotes the subunitarfat nonzero absorption trary T. _ o _ _ _
scattering matrix to be precisely defined below. The marix _ Our starting point is the general relation established in
has the positive eigenvalugs<1, the so-calledreflection Ref. [8] betweenR and the effective non-Hermitian Hamil-

. _ s t _
eigenvaluesTheir statistical properties in chaotic resonancetOnian=H—(i/2)VV" of the open system, where the Her

scattering attract much attention presently, both experimeHpltlan partH stands for the closed counterpart and the am-

tally [1,2] and theoreticallyf3—9], using the random-matrix plitudesVy describg the c_:oupling betwgehintrinsic andM .
theory approach0,11. channel states. It_|s achieved b_y making use of_the equiva-
In the limit of weak absorptionRR was found[1,7] to be Iehr!fceE[G_—E]Jrquu/nzlfo;mhabsorpthn to the purk(]a imaginary

related to the Smith’s time-delay matrix at zero absorption;ss Q S(E=)= 1'_ ?VT(OE t_%;??it/erﬂﬂselgeagf’t; tlrjfcé ?(;\I/Igv%
whose statistical properties were extensively studied in re.—ny connyection betweén the reﬂéction matfand the time-
cent time[12-14. Such an analysis was recently generalizedI g

: . del trix with absorpti h=1) [8]:
by us to the case of arbitrary absorpti@], see alsd9] for elay matrix with absorption, ( ) (8l

the related study. In the particular case of the single-channel R=1-T,0 1)
cavity, obtained results partly explain the recent experiment axy

2] on the reflection coefficient distribution. _ _\t - -

2] where Q,=Q(E,)=V'[(E,~H)]"%E,~H) V. The

The opposite case of a large number of equivalent Chandis
nels plays an important role in chaotic scattering, corre-
sponding to the semiclassical limit of matrix modEgls,18.

In this caseN strongly overlapping resonancgmles of the

S matrix) are excited in the open cavity through the scatter- T oM o
ing channels, whose numbkt scales withN. A new energy to the dlsmbqt'onP.T(T)_ T G ch/t”.) of the
scale appears then in addition to the mean level spakinf Proper dela}y t|m_ese|genvalu§$1C of Qy)_scaled withM and
the closed cavity{12,18: the empty gap between the real measured In units pf the Hel_senberg tl_mecZw/A.

axis in the complex energy plane and the cloud of the reso- The funct|_or_1(2) IS ”O’Tf‘E‘J‘_’ to. unity. The average re-
nances in its lower half plane. In the physically justified limit flection coefficient(r)=M~"tr R is given by
M/N<1 [12] (though bothM ,N—<0) considered below this

gap is given by the well-known Weisskopf width\y (ry= fldrrP(r):TJr y(1-T) .
=MTA/2m, with T=1—|S|?><1 being the transmission co- 0 T+y
efficient[17]. In the presence of finite absorption the widths

of the resonances acquire an additional contribution, the abFhis result follows from the connectidi8] betweer(r) and
sorption widthT', [8]. The two competing processes, the the “norm-leakage” decay functio®(t) introduced in[19]:
escape into continuum and dissolution into the walls, ardr)=1—9[1—T,[;dte "a'P(t)]. In the limit considered
therefore characterized by the rafig/T"y=y/T, where the  P(t) reduces to the simple exponesit' W', since the widths
convenient dimensionless parametg=2«1",/AM mea- ceased to fluctuale 8,19. Below we will also derive Eq(3)
sures the absorption strength. using a different method.

tribution functionP(r) is therefore directly related as

P(r)=y *PLy *(1-1)] (2

()
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THE SADDLE-POINT EQUATION K4+ ngS( 1) Kz[( 2)2 8¢ ( zﬂ
The scaling limit studied is far from being trivial and t i) 4 g :Y _ﬁ_ ot
cannot be obtained from the known expressionsAfr) at
finite M [8] simply by lettingM — « there. One needs to start n E( 1— E) _ i _ ®)
from the original definition that determines the desired dis- v t v

tribution through the jump of the resolvenG(t)

=M~ Mr(t-T,Q,) "=1k+(¥/t)K(t) along the disconti- | the zero absorption limity—0 with fixed t/y=r, this
nuity line t>0 as follows: equation simplifies to the cubic one found ear[i£6].
The choice of the sign +” is justified by two reasons.
y First, only then the complex solution of E¢/) yields the
P(r)= ——Im K(t—i0)|i=1_- (4) distributionP(r) nonzero at positive. Second, the function
1-r K(t), as follows directly from its definition, must have tat
— —oo the positive limitK..=t,;*tr Q, <1 [8], which is the
Following Refs.[8,16], one can obtain the exa@tN—»=)  mean scaled proper delay ti{e). The equation for the
representation foK, which is convenient for our purposes, latter follows then readily from8) as[(g+ 2/y)?—1](7)?
+4({ 1)/ y—4ly*=0 which gives(r)=T/(y+T), reproduc-
ing thus Eq.(3) by virtue of (ry=1—y(7).
> : 5
L

1 1-t/2

K(t)=<§st{ ( A_iﬁ/M) ko

with the shorthand( . ..)),=fdu(&)(...)eM?~ and

The higher moments of the distribution can be easily cal-
culated in the same way, exploiting the &kpansion further.
For example, substituting =(7)+ y({72)/t+O(t~?) in Eq.

(8) and equating there thetlterm to zero, we find 7%)
=(7)Vy*+2(y+T)]/(y+T)2 That yields the variance of
reflection eigenvalues as follows:

L=(y)stf(1—t/2)AG—i1—tA,5]
—strin1+(2g) Y A&+&A)], (6)

Y?T2(2y+2T(1—y)—T?)

(y+T)* ©

(r3)—=(r)?=
as the integral over the noncompact saddle-point manifold of

the 8x8 supermatrixd subject to the constraing?=1. Remarkably, the variance and, therefore, fluctuationsase
A,A, appearing above are the supermatrix analog of thesuppressed in the both limits of weak and strong absorption.
Pauli matricesrs,0; andk=+1(—1) in the space of com- This reflects the fact thaR becomes the unit matrix as
muting (anticommuting variables. Definitions of the super- y—0 whereasR—1—T (or S,—S) as y—», see also
algebra as well as explicit parametrization, which depends o&q. (3).

whether time-reversal symmet(yRYS) is preserved or bro- To understand qualitatively the structure of the solutions
ken, can be found if10,20. At last, the constang=2/T  of the saddle-point equation, it is instructive to consider the
—1=1 is related to the transmission coefficidnt behavior of 1f as a function oK shown schematically on

In the limit M — oo the integration oved can also be done Fig. 1. We readily see that the distribution functi®Xr) is
in the saddle-point approximation. Functi) is given by a  nonzero only in the finite domain;;<r <r,ax. The value
saddle-point value of, which is found, as usual, by equat- of the upper border,,,.<1 at anyg and y. In a vicinity of
ing the varianceSL to zero. The structure of the latter equa- r . the distribution behaves aB(r)o ry— . For the
tion is determined by that of. A careful analysis shows lower border we findr,,;,=0 and P(r)<1/\r, when @
that, independently of TRS, the supermaiixeducesand  —2/y)?<1 or T<y<T/(1-T), and r ;>0 with P(r)
so does the corresponding algebrathe saddle-point to the % \Jr =, otherwise[21]. Such a behavior should be con-
2X2 usual matrix o=ao3+boy with the imposed con- trasted with that of the few-channel cd$3 when all values
strainta®+b?=1. We find thatk=a—ib(1-t/2)/\V1—t,  of r from zero to one are permitted. Further analytical study
whereas the equatio®L=0 gives (y/t)J1—tK+ib/(g is possible in the following particular cases, which we con-
+a)=0. Eliminating in this equatiorm and b, one finally  sider in detail now.
arrives after some algebra at the following saddle-point equa-

tion: PERFECT COUPLING, g=T=1

= 4 (7) dotted lines on Fig. 1 shrinks to the lilke= — 1. Eliminating
2 YK+ {(K+g)2+ 1+4/72_92_2/7’ the resulting common factoK(+ 1), one gets from Eq8)
the following cubic equation:

1 1 1 (K+g)/2 In this case, the region between the two vertical dashed-
t

where the sign %" must be taken. Independently on the 1-1)2 5
taken choice of the sign, E¢7) can be further equivalently K3+ K2+ Q[K(_y_l_ y

+1
represented as the following fourth-order equatiofKin ry? 1-

=0, (10
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FIG. 1. The schematic plot of tLAs a function oK. The solid
and dashed lines correspond to the choices of thé &nd “ —"

signs in Eq(7), respectively. Altogether they form the complete set

of solutions of the fourth-order equatidB). In the shadowed re-
gion the latter equation has two complex-conjugated r@ats two
real roots irrelevant for our purpogesvith t~1>1 (r>0). Thus,
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FIG. 2. The exact reflection distributidisolid lineg compared
to the corresponding approximate expressidr#, (13), and(15) at
perfect T=1, left) and nonperfectT1=0.5, righy coupling.

SPECIAL COUPLING, g?=1+4/v?

Under this condition Eq(7) reduces to a quadratic equa-
tion in K, giving readily

2y1l—rgNrglr—1

(1-r)2 "’

with ry=2/(1+ 1+ 2/4)=2/(1+g/ g7~ 1).

Py(r)= (14)

7Trg

WEAK COUPLING, g=2/T>1

One can find approximate expressions ®{r), making

only in this region the corresponding density is nonzero. Anothetuse of the scalindK ~O(1/g) in the exact equations. When

solution with 0<t~!<1 is unphysical.

written already in the variable=1—t. We find that the
discriminant D=[(1+ v)/(3y*r)13(r. —r)(r—r_)(1—r)*
of this equation, with

8+20y%— y*= y(8+ y?)3"?
=
B 8(1+y)°

: (11)

is positive atr >0 (and thereby InK is nonzerg only in the
domain makOy _]<r<r, . This explicitly sets the exact
borders for the searched distributid?(r) can be found from

absorption is weak, we may expand the square root ir(&q.
and keep only the main contribution@?y)(1+2gK) ! in-
stead of the last term there. That leads again to a quadratic
equation in K, giving readily the behavior P(r)
~(y1297?) Y2\Jf max—T/(1—1)? near the upper border,,,,
~1—v/8g. For y from the small interval T,T/(1-T)],
whenr ,i,=0, P(r) is given in the leading approximation by
Eq. (14), with r 4 replaced by 5, because the applicability
condition for Eq.(14) is now satisfied up t@(g~?). At
other values of smaly there is no reliable approximation for
the lower border available ang,;,>0 is to be found from
the general equatiof21]. At last, for very strong absorption

Eq. (10) by applying Cardan’s formulas, reproducing exactly angarbitrary nonperfectoupling, T+ 1, we can use scaling

the result of Ref[5] obtained by a different method. When K~O(1/y

absorption is weaky<<1, the behavior ofP(r) can be well
approximated by the following interpolation expressjaa]:

Cy N =n(r—r-)
2m (1A

Py<a(r)= (12)

) in Eq. (7). That allows us to replace the last
term there with (K+ g)/(1+gK—2/y), yielding finally

~C (rotAr—r)(r—ro+Ar)
e T T T —

(15

with C,=1+3y+0(y?) being the normalization constant. with the normalization constai@~ y—2(1—T) and
In the opposite case of strong absorption, the distribution is

found to be close to

2V1-r, \ro/r—1
(1-1)?2

Pyoa(r)= (13

7TI’+

The limiting distribution (12) or (13) becomes asymptoti-

2T(2—3T -7
roml—T——(’y ) and Ar~2\/§T —y,

which is valid wherr ;> Ar or y>8T2/(1—T). Expression
(15) becomes asymptotically exact @ggrows, approaching

cally exact asy diminishes or grows, respectively. All these the “semicircle” distribution with the center aty and the

features are illustrated on Fig(a.

radiusAr, see Fig. &).
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THERMAL EMISSION or amplification, the ratiaves/ v is T/2. The largey expan-

i —1_9(1— -2
As an application of our results we consider thermal emisSION Ver/ v=1=2(1—=T)/y+O(y") shows that the satura-
sion from random media. In his seminal paper Beenaker tion to the blackbody limit gets slower when transmission

has shown that the quantum optical problem of the photoﬂ_<1' ) ,

statistics can be reduced to a computation of$meatrix of In conclusion, for many-channel chaotic systems we have
the classical wave equation. In particular, chaotic radiatiorf€Mved the general distribution of reflection eigenvalues at
may be characterized by the effective numbgy degrees of arbitrary values of absorption and transmission. We note that
freedom as follows:ves/v=(1—(r)2{(1—r)?)<1 [5], QUe to a (_juality relatio!ﬁ5,25], an gmplifying system in the
with vez= v for blackbody radiatioi23]. We find using Eq. linear regime [',<T'yy) is directly linked to the dual absorb-

(9) that at anyy and T ing one through the change of the sign Iof in (1) and
correspondingly thereafter. As a result, the reflection matri-
Vett (T>2 (y+T)2 ces(and their eigenvalugof dual systems are each other’s

W () = m (16)  reciprocal. Therefore, the analysis pr'esented can st(aightfor—
wardly be extended to the case of linear amplification that

and a mean photocoufit= vfyT/(y+T), with f being a might be also relevant for the rapidly developing field of
Bose-Einstein function. The earlier resi8 is reproduced at 'andom laser4,5,24 -2,
T=1. Upon the substitution of with —y one can usé5]
n and v /v (16) even for amplified spontaneous emission
below the laser thresholdy<T. In this case our mean
photocount agrees with the findings of REZ4], where the We are grateful to G. Hackenbroich and C. Viviescas for
general theory of photocount statistics in random amplifyinguseful discussions. The financial support by the SFB/TR 12
media was developed. In the limit of vanishing absorptionder DFG is acknowledged with thanks.
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